How to Control Gradient Descent

Michael Zimmer

January 15, 2021

This article provides an introduction to the full paper on the Neograd algorithms
[Zimmer, [2020af] (submitted for publication).

Introduction

There are many computations that are done in science and technology in which one has
to minimize what is known as a cost function (CF). People use CFs because they’re easy
to construct, and because their minimum corresponds to what we seek to know. They
have been used throughout machine learning (ML), physics, and many other fields. As
it turns out, the gradient descent (GD) algorithm is especially convenient for finding
minima of the CF. Recall that GD operates on a function f(6) by updating its argument
from 0,4 t0 0,,¢4, Via

gnew = 00[(1 - OlVf (D

where « is a scalar known as the learning rate. This updating is repeated until a stopping
condition is met. As shown, one only needs to compute the gradient (V f), and to set v
to a suitably small number.

However, finding the "best" value for « turns out to be an issue. Often, people will
do several trial optimization runs using different « values to see which seems to lead to
the best behavior, and then just select that value. However, even the mere idea of using
a single value of « for an entire optimization rate is flawed. I argue that it’s comparable
to trying to drive between two cities at a single speed. For example, would the best
speed to drive between Chicago and St Louis be 10mph, 40mph or 70mph? Certainly,
for different parts of the trip, different speeds would be preferred. It’s a similar situation
with finding the best a for GD.

Now, there have been many papers on GD, so much so, that it’s hard to convince
anyone to look at another one. To convince you to keep reading, I’1l tell you that
Neograd allows you to routinely reach smaller values of the CF by a factor of 108 to
10*2. The introduction that’s presented here will show an algorithm that far surpasses
the results from all previous GD variants, such as Adam. In addition, it provides insight
into why those other algorithms have limited performance.

The p Diagnostic

The first step is to introduce a measure that says when the learning rate is too large or
small based on a pair of CF values. This diagnostic measure is motivated by Fig.



which displays the 6 value before updating (6,;4) and after updating (0,,¢.,), as well as

foid

fnew

fest

eold 9new

Figure 1: The blue curve is the cost function. The green line is tangent to the cost function at
0014, and after extrapolating it to 0., equals fes:. The orange line is the difference between
fne'w and fe'sf-

the CF values at those points: foiq = f(0o1d), fnew = f(Onew)- In addition, we define
fest, which is the estimated CF value based on the GD algorithm:

fest = fold + Vf - df (2)

where df = 0,6, — 6,14- Note that this is really just a linear equation, like the familiar
"y =max + b",excepthere y = fest, m = Vf, 2 =0pen,and b = fo10 — V- 004
The range of values of f..; is shown as a green line in Fig. [I|as df varies from 0 to
enew - eold-

However, what is really of interest for us is the orange line in the figure. It represents
the gap or "deviation" between the estimate f.;, and the actual value of the CF, f,c.,.
In the figure, this deviation indicates whether « is too large or small. However, to make
it really useful, it should be dimensionless. Here, that is achieved by dividing it by the
vertical drop from f.,;. This leads to the p diagnostic measure:

fnew - fest

fold - fest

Note this measure is invariant with respect to translating and scaling f (while keeping
df constant), which is exactly what is needed. Thus, p serves as a sort of universal
measure of the appropriateness of the size of a.

p— . 3)

How to think about p

First note that for very small values of p, it is proportional to «. Next, one must
understand what an acceptable value for p is. Certainly, values that are extremely small
will certainly lead to inefficient optimization, while those that are too large will lead to
relatively erratic and uncontrolled updates.



However, before giving a direct answer on a "best value" for p, first consider this
analogy. Imagine someone with an old car who’s trying to drive as fast as possible. He
won’t even be looking at the speedometer; he only pays attention to when the car begins
physically shaking at high speed. This person reasons, "if the car is shaking only a little,
then I can go faster, and if it’s shaking a lot, I should slow down". Thus, the amount of
shaking acts as a proxy for controlling the gas pedal, and indeed within the context of
GD p can be employed in a similar manner with respect to a.

The approach that will be adopted will be to attempt to adjust « so that p is kept at
some target value. This is called the constant p ansatz, and an « that achieves that is
called the ideal learning rate. (In the case where p can only be (mostly) kept to only
a target interval, it will be referred to as a near-ideal learning rate.) The effectiveness
of this approach will be demonstrated next on a simple cost function. In the paper, a
typical target value was p = 0.1 and a typical target interval was (0.015,0.15).

An Example

A good example for demonstrating the usefulness of p is the 1-dimensional quartic CF:
f = 6. In this case

df = —aVf = —4a6? )
fora = 0* Q)
frew = (0 + do)* (6)
fest = fora +Vf-db @)

A straightforward calculation [Zimmer} 2021] reveals
p = 6g — 16¢> + 16¢° ®)

where ¢ = a#?. The most important feature to take note of is that p now depends on 6.
This means that a single a will have a different effect depending on the nearness to the
minima. Even more interesting is that it can be easily inverted (approximately) in favor
of a.

o~ p/(66%) ©)

Although quite simple, this is actually quite remarkable. We now have a formula by
which to set v given a desired value of p. With each iteration of the GD algorithm, as
0 changes, this formula guarantees that a target value of p is maintained; this is called
an "Ideal GD" algorithm. This is illustrated in Fig. 2| which shows log f and log p
vs iteration for Adam and the Ideal GD. The initial value was § = —3 for both; for
Adam: o = 0.15, 8 = 0.9, B> = 0.999, and ¢ = 10~8. This graph shows that the
value reached with Ideal GD is more than a factor of 10%° times smaller than that from
Adam after only 150 iterations. Obviously, the longer the run, the larger this factor
becomes. In addition, it shows that with Adam, the stage at which it begins to plateau
coincides with its p value dropping. In the figure, this occurs near the 50th iteration.
This feature was seen repeatedly with Adam. Since p is not controlled with Adam,



|Og 1()f |0910.0

—— Ideal GD — Ideal GD
Adam Adam

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
iterations iterations

Figure 2: Comparison between Neograd and Adam on the quartic CF. Note the linear descent in
the log f for Neograd, while there is a plateau for Adam.

the algorithm naturally evolves such that p takes on very small values, causing it to
become very inefficient. Essentially, Adam has a built-in regularization, due to its lack
of effectiveness in reaching a minimum. It’s akin to early stopping. In addition, running
Adam was a challenge because a number of trial optimization runs had to be done even
to find an « that led to this sub-optimal result. With respect to the Ideal GD algorithm,
the main issue is that it makes the CF so small that one has to worry about machine
precision errors, since the numbers get that small.

Efficiently computing p

In the previous section, we gave an example of a simple cost function and determined
an exact relation between p and . Using that, it was possible to set « as a function of a
target value for p. In a real application, the CF becomes extremely complicated, and
the computation of such a relationship becomes out of the question. Furthermore, in a
real application, a measurement of p will be used in setting «, and as it stands now, the
formula for p makes it appear two computations of the CF will be needed, per iteration.
However, it’s possible to easily measure p with only one computation of the CF per
iteration. Let us first begin with the vanilla version of GD, as shown in Algo. |I|

Algorithm 1 : Sequence of operations for a basic GD algorithm
Init:
fori=1tonum+I do
f = 1(6)
g=Vf[(®)
df = —ag
0=0+do
end for
Return: 0




The most important thing about this version is the order of the following operations
within the FOR-loop: (1) evaluate CF; (2) evaluate gradient; (3) update 6. This "CF-
gradient-update"” sequence is now modified so there’s an initial "CF" before the loop,
and inside the loop the order is "gradient-update-CF". This rewriting is equivalent, in
the ways that matter. This allows it to have access to f,¢, and f,;4, and hence p can be
implemented with almost no additional overhead. This rewriting leads to Algo. 2]

Algorithm 2 : Amended basic GD algorithm, now including computation of p

1: Init: O,

2 fora = f(Bo1a)

3: fori=1 to num do
9=V f(0oa)

dd = —ag

Onew = Bold +do
fnew = f(enew)
fest = fola+g-do
P = get—rho(fold; fnewa fest)
10: fold = fnew

11: 0014 = Ornew

12: end for

13: Return: 6,,¢,,

R R BN

Finally, if one would prefer not to do this rewriting, it is also possible to include an
IF-conditional inside the original algorithm and achieve the same result. The version
used here was chosen since it’s preferred by the author.

Approximating o

With that out of the way, the next step is understanding how to use the original p formula
to set . It turns out it can be used in an approximate manner, and with no significant
computational overhead. With the definition of p in mind (Eqn. [3), define the quantities
A and B via

A= (fnew _fest)/a2
B = (fest - fold)/a'

This is done to pull out the leading order dependence on o and make it explicit. As a
result, A and B are constants, to leading-order in o. However, note that in general A
retains a-dependence, while B has no a-dependence. Using these three equations, an
expression for o easily follows

B
Q‘A‘p. (10)

Note that after an update, A, B, p can be computed, and they produce an « via this
equation. The simplest way this equation can be used is to compute a between lines
9 and 10 in Algo.[2] This approach works very well, assuming there are no extreme



features in the CF. Also, implicit in this simple approach is the assumption that the
p computed in line 9 doesn’t differ significantly from its target value. If it does, an
adjustment can be made, as shown in the paper [Zimmer, 2020al]. Another improvement
that can be made is to introduce momentum, which is also shown the paper. When both
of these enhancements are used, the version of the algorithm is referred to as NeogradM.
It is this version that works well against Adam in real applications; the reader is advised
against skipping these enhancements.

Here is an example of the application of NeogradM to the problem of digit recog-
nition (with data from |Scikit-learn| [2020]]). The CF was a cross-entropy penalty con-
structed between the output of a neural net and the training label. Details of the model
are in the paper. As can be seen in Fig.[3] the values of the CF reached using NeogradM

lo J1o0 f
i

-2 |

-4

-6

-8
1 — NeogradM
19 Adam

0 500 1000 1500 2000 2500 3000 3500
iterations

Figure 3: A comparison plot between NeogradM and Adam on the CF from a neural net model
for digit recognition. Note the 8 order of magnitude difference between values for log f.

are about 108 times lower than with Adam. In addition, as shown in the paper in Fig.
13, the value of p mainly stays in the target interval; the p values for Adam drop below
the target interval by a factor of about 100. Once again, the picture with Adam is that p
becomes very small, and the CF profile has a plateau.

Final comments

The purpose of this article has been to introduce you to the main concepts from the full
paper on the Neograd family of algorithms. Perhaps the most important takeaway is
that the p metric is easy to implement and is a reliable indicator of the learning rate.
If you go on to implement it in your own gradient descent programs, that is half the
battle. Then, you might see that your current program could be run faster. At that point,
perhaps you’ll be willing to take the next step and implement NeogradM; sample code
is on Github [Zimmer, [2020b].

In addition to what has been reviewed here, the paper [Zimmer, |2020a] includes
a number of other useful results, such as other metrics, another derivation of GD, and
other results.



Hope you enjoyed the article!

References

M.F. Zimmer. Neograd: Gradient descent with a near-ideal learning rate. arXiv preprint,
arXiv:2010.07873, 2020a.

M.F. Zimmer. Computing rho for three examples, 2021. URL http://www,
neomath.com/gallery/rho_algebra.pdfl

Scikit-learn.  Digits dataset, 2020. URL https://scikit-learn.org/
stable/modules/generated/sklearn.datasets.load_digits.
htmll

M.F. Zimmer. Github repository, 2020b. URL www.github.com/mfzimmer,


http://www.neomath.com/gallery/rho_algebra.pdf
http://www.neomath.com/gallery/rho_algebra.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html
www.github.com/mfzimmer

